Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 155, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641616

RESUMO

BACKGROUND: Classification of binary data arises naturally in many clinical applications, such as patient risk stratification through ICD codes. One of the key practical challenges in data classification using machine learning is to avoid overfitting. Overfitting in supervised learning primarily occurs when a model learns random variations from noisy labels in training data rather than the underlying patterns. While traditional methods such as regularization and early stopping have demonstrated effectiveness in interpolation tasks, addressing overfitting in the classification of binary data, in which predictions always amount to extrapolation, demands extrapolation-enhanced strategies. One such approach is hybrid mechanistic/data-driven modeling, which integrates prior knowledge on input features into the learning process, enhancing the model's ability to extrapolate. RESULTS: We present NoiseCut, a Python package for noise-tolerant classification of binary data by employing a hybrid modeling approach that leverages solutions of defined max-cut problems. In a comparative analysis conducted on synthetically generated binary datasets, NoiseCut exhibits better overfitting prevention compared to the early stopping technique employed by different supervised machine learning algorithms. The noise tolerance of NoiseCut stems from a dropout strategy that leverages prior knowledge of input features and is further enhanced by the integration of max-cut problems into the learning process. CONCLUSIONS: NoiseCut is a Python package for the implementation of hybrid modeling for the classification of binary data. It facilitates the integration of mechanistic knowledge on the input features into learning from data in a structured manner and proves to be a valuable classification tool when the available training data is noisy and/or limited in size. This advantage is especially prominent in medical and biomedical applications where data scarcity and noise are common challenges. The codebase, illustrations, and documentation for NoiseCut are accessible for download at https://pypi.org/project/noisecut/ . The implementation detailed in this paper corresponds to the version 0.2.1 release of the software.


Assuntos
Algoritmos , Software , Humanos , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina
2.
Sci Rep ; 14(1): 5725, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459085

RESUMO

The development of reliable mortality risk stratification models is an active research area in computational healthcare. Mortality risk stratification provides a standard to assist physicians in evaluating a patient's condition or prognosis objectively. Particular interest lies in methods that are transparent to clinical interpretation and that retain predictive power once validated across diverse datasets they were not trained on. This study addresses the challenge of consolidating numerous ICD codes for predictive modeling of ICU mortality, employing a hybrid modeling approach that integrates mechanistic, clinical knowledge with mathematical and machine learning models . A tree-structured network connecting independent modules that carry clinical meaning is implemented for interpretability. Our training strategy utilizes graph-theoretic methods for data analysis, aiming to identify the functions of individual black-box modules within the tree-structured network by harnessing solutions from specific max-cut problems. The trained model is then validated on external datasets from different hospitals, demonstrating successful generalization capabilities, particularly in binary-feature datasets where label assessment involves extrapolation.


Assuntos
Hospitais , Aprendizado de Máquina , Humanos , Prognóstico , Unidades de Terapia Intensiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA